
protocol

nature protocols | VOL.8 NO.X | 2013 | �

INTRODUCTION
High-throughput sequencing of genomes (DNA-seq) and tran-
scriptomes (RNA-seq) has opened the way to study the genetic and 
functional information stored within any organism at an unprec-
edented scale and speed. For example, RNA-seq in principle enables 
the simultaneous study of transcript structure (such as alterna-
tive splicing), allelic information (e.g., SNPs) and expression with 
high resolution and broad dynamic range1. These advances greatly 
facilitate functional genomics research in species for which genetic 
or financial resources are limited, including many non-model 
organisms—organisms that, although they have not been exten-
sively studied in a research setting, are nevertheless of substantial 
ecological or evolutionary importance.

Although many genomic applications have traditionally relied on 
the availability of high-quality genome sequences, such sequences have 
only been determined for a very small portion of known organisms. 
Furthermore, sequencing and assembling a genome is still a costly 
endeavor in many cases, owing to genome size and repeat content. 
Conversely, as only a fraction of the genome is transcribed, RNA-seq 
data can provide a rapid and cheaper ‘fast track’—within reach of any 
lab—to delineating a reference transcriptome for downstream appli-
cations, such as alignment, phylogenetics or marker construction. 
Indeed, even within a whole-genome sequencing project, RNA-seq 

has become an essential source of evidence for the identification of 
transcribed genes and the annotation of exon structure.

Realizing the full potential of RNA-seq requires computational 
methods that can assemble a transcriptome even when a genome 
sequence is not available. Two primary methods exist for converting 
raw RNA-seq data into transcript sequences: through the guid-
ance of assembled genomic sequences or via de novo assembly2,3. 
The genome-guided approach to transcriptome studies has quickly 
become a standard approach to RNA-seq analysis for model organ-
isms, and several software packages exist for this purpose4,5. This 
approach cannot, however, be applied to organisms for which a 
well-assembled genome does not exist, and even for organisms hav-
ing well-assembled genomes the results may vary across genome 
assembly versions. In such cases, a de novo transcriptome assembler 
is required. However, the process of assembling a transcriptome 
violates many of the assumptions on which assemblers developed 
for application on genomic DNA data rely. For example, uniform 
coverage and the ‘one locus-one contig’ paradigm are not valid 
for RNA: an accurate transcriptome assembler will produce one 
contig per distinct transcript (isoform) rather than per locus, and 
different transcripts will have different coverage, reflecting their 
different expression levels.
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De novo assembly of RNA-seq data enables researchers to study transcriptomes without the need for a genome sequence; this 
approach can be usefully applied, for instance, in research on ‘non-model organisms’ of ecological and evolutionary importance, 
cancer samples or the microbiome. In this protocol we describe the use of the Trinity platform for de novo transcriptome assembly 
from RNA-seq data in non-model organisms. We also present Trinity-supported companion utilities for downstream applications, 
including RSEM for transcript abundance estimation, R/Bioconductor packages for identifying differentially expressed transcripts 
across samples and approaches to identify protein-coding genes. In the procedure, we provide a workflow for genome-independent 
transcriptome analysis leveraging the Trinity platform. The software, documentation and demonstrations are freely available from 
http://trinityrnaseq.sf.net. The run time of this protocol is highly dependent on the size and complexity of data to be analyzed. 
The example data set analyzed in the procedure detailed herein can be processed in less than 5 h
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Several tools are now available for de novo assembly of RNA-seq. 
Trans-ABySS6, Velvet-Oases7 and SOAPdenovo-trans (http://soap.
genomics.org.cn/SOAPdenovo-Trans.html) are all extensions of 
earlier developed genome assemblers. We previously described 
a novel alternative method for transcriptome assembly called 
Trinity8. Trinity partitions RNA-seq data into many independ-
ent de Bruijn graphs (ideally one graph per expressed gene), and 
it uses parallel computing to reconstruct transcripts from these 
graphs, including alternatively spliced isoforms. Trinity can lever-
age strand-specific Illumina paired-end libraries, but it can also 
accommodate non-strand-specific and single-end-read data. 
Trinity reconstructs transcripts accurately with a simple and intui-
tive interface that requires little to no parameter tuning. Several 
independent studies have demonstrated that Trinity is highly 
effective compared with alternative methods (e.g., refs. 9–11; The 
DREAM Project’s Alternative Splicing Challenge, http://www.the-
dream-project.org/result/alternative-splicing). The high number of 
citations that Grabherr et al.8 has accrued in a relatively short time 
(since its online publication in May 2011) further corroborates 
Trinity’s utility. Trinity users study a broad range of model and 
non-model organisms from all kingdoms, and they come from 
small laboratories and large genome projects alike (e.g., the pea 
aphid genome annotation v2; Fabrice Legeai (INRA 




) and Terence 

Murphy (RefSeq National Center for Biotechnology Information 
(NCBI)), personal communications to A. P.).

Trinity also has an active developer community, which has greatly 
enhanced its performance and utility (see http://trinityrnaseq.
sourceforge.net). For example, although the run-time performance 
of the first release was not computationally efficient11, the Trinity 
developer community has since improved its efficiency, halving 
memory requirements and increasing processing speed through 
increased parallelization and improved algorithms (Henschel et al.12  
and M.O., unpublished data). 




Furthermore, Trinity was converted 

into a modular platform that seamlessly uses third-party tools, 
such as Jellyfish13, to build the initial k-mer catalog. Other third-
party tools integrated into Trinity have enhanced the utility of its 
reconstructed transcriptomes. For example, Trinity now supports 
tools (e.g., RSEM14, edgeR15 and DESeq16) that take its output 
transcripts and test for differential expression while accounting 
for both technical and biological sources of variation17–19 and cor-
recting for multiple hypothesis testing. Given Trinity’s popularity 
and substantial enhancements since publication, it is important to 
provide detailed procedures that leverage its various features. The 
procedures we present here will further expand Trinity’s utility for 
studies in non-model organisms.

Q3Q3
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Overview of the Trinity RNA-seq assembler
Trinity’s assembly pipeline consists of three consecutive modules: 
Inchworm, Chrysalis and Butterfly (Fig. 1). We strongly encour-
age users to first read Trinity’s first publication8 for an extensive 
description of the method, which we present here more briefly.

First, all overlapping k-mers are extracted from the RNA-seq 
reads. Inchworm then examines each unique k-mer in the decreas-
ing order of abundance, and it generates transcript contigs using 
a greedy extension based on (k-1)-mer overlaps. Inchworm often 
generates full-length transcripts for a dominant isoform, but it 
reports just the unique portions of alternatively spliced transcripts. 
This method of operation works well for data sets that are largely 
deficient in repetitive sequences, such as transcriptomes.

Next, Chrysalis first clusters related Inchworm contigs into com-
ponents, using the raw reads to group transcripts on the basis of 
shared read support and paired read links, when available. This 
process clusters together regions that have probably originated from 
alternatively spliced transcripts or closely related gene families. 
Chrysalis then encodes the structural complexity of clustered 
Inchworm contigs by building a de Bruijn graph for each cluster, 
and it then partitions the reads among the clusters. The partition-
ing of the Inchworm contigs and RNA-seq reads into disjointed 
clusters (‘components’) enables massively parallel processing of 
subsequent computations.

Finally, Butterfly processes the individual graphs in parallel, ulti-
mately reporting full-length transcripts for alternatively spliced iso-
forms and teasing apart transcripts that correspond to paralogous 
genes. Butterfly traces the RNA-seq reads through the graph and 
determines connectivity based on the read sequence and on further 
support from any available paired-end data. When connections 
cannot be verified by traced reads, Butterfly will split the graph 
into several disconnected sub-graphs and process each separately. 
Butterfly then traverses the supported graph paths and recon-
structs transcript sequences in a manner that reflects the original  
cDNA molecules.

We describe key issues related to Trinity’s operation in Boxes 1–4  
(see also Figs. 2–6 and Supplementary Figs. 1–5), including 
the following: requirements of the input sequence data and the 
optional use of in silico normalization to reduce the quantity of 
the input reads to be assembled and to improve assembly efficiency 
(Box 1); computing requirements and the availability of comput-
ing resources to users for running Trinity (Box 2); the basics of 
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Single high-memory,
multicore server

Figure 1 | Overview of Trinity assembly and analysis pipeline. Key sequential 
stages in Trinity (left) and the associated computational resources (right). 
Trinity takes as input short reads (top left) and first uses the Inchworm 
module to construct contigs. This stage requires a single high-memory 
server (~1 GB of RAM per 1 million paired reads, but varies according to read 
complexity; top right). Chrysalis (middle left) clusters related Inchworm 
contigs, often generating tens to hundreds of thousands of Inchworm 
contig clusters, each of which is processed to a de Bruijn graph component 
independently and in parallel on a computing grid (bottom right).  
Butterfly (bottom left) then extracts all probable sequences from each  
graph component, which can be parallelized as well.

http://soap.genomics.org.cn/SOAPdenovo-Trans.html
http://soap.genomics.org.cn/SOAPdenovo-Trans.html
http://www.the-dream-project.org/result/alternative-splicing
http://www.the-dream-project.org/result/alternative-splicing
http://trinityrnaseq.sourceforge.net
http://trinityrnaseq.sourceforge.net
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running Trinity (Box 3); and advanced operations, such as leverag-
ing strand-specific RNA-seq (Box 4). Additional issues relevant to 
evaluating de novo transcriptome assemblies, including examin-
ing the completeness of an assembly and estimating the potential 
impact of deeper sequencing, are addressed in the Supplementary 
Note and 




in Supplementary Figures 6 and 7.Q5Q5

Transcriptome analysis package for non-model organisms
Generating a de novo RNA-seq assembly is only the first step toward 
transcriptome analysis. Common goals for studying transcriptomes 
in both model and non-model organisms include identifying tran-
scripts, characterizing transcript structural complexity and cod-
ing content, and understanding which genes and isoforms are 

 Box 1 | Input sequence data requirements for assembly 
This protocol requires users to supply short-read data in either FASTQ or FASTA formats. Although these reads may be either paired-end 
or single-end, paired-end sequence data are preferred, as they are able to guide more distant connections between regions of transcript 
isoforms during assembly. Strand-specific transcript sequencing is also highly recommended so that sense and antisense transcription 
can be readily distinguished. If multiple sequencing runs are conducted for a single experiment, these reads may be concatenated into 
a single-read file for single-end sequencing, or into two files (e.g., merging all ‘left’ and all ‘right’ reads into single ‘left.fq’ and ‘right.
fq’ files, respectively) in the case of paired-end sequencing. Similarly, if multiple biological or technical replicates are sequenced,  
these data can be concatenated into individual files. Trinity may be used with data of any read length commonly produced by next-
generation sequencers, but most of our experience stems from the use of either 76- or 101-base Illumina reads.

For paired-end reads, Trinity must identify those reads that correspond to opposite ends of a sequenced molecule. Trinity requires 
reads in either FASTQ or FASTA format to have read names (accessions) that include a /1 or /2 suffix to indicate the left or right end of 
the sequenced fragment. For example:
(first entry of the ‘left.fq’ file)

@61DFRAAXX100204:1:100:10494:3070/1

ACTGCATCCTGGAAAGAATCAATGGTGGCCGGAAAGTGTTTTTCAAATACAAGAGTGACAATGTGCCCTGTTGTTT

 + 

ACCCCCCCCCCCCCCCCCCCCCCCCCCCCCBC?CCCCCCCCC@@CACCCCCACCCCCCCCCCCCCCCCCCCCCCCC

(first entry of the ‘right.fq’ file)

@61DFRAAXX100204:1:100:10494:3070/2

CTCAAATGGTTAATTCTCAGGCTGCAAATATTCGTTCAGGATGGAAGAACATTTTCTCAGTATTCCATCTAGCTGC

 + 

C < CCCCCCCACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCBCCCCCCCCCCCCCCCCACCCCCACCC = 

If the Casava 1.8 format for FASTQ is used (see below), Trinity will reconstruct the read name from

@HWI-ST896:156:D0JFYACXX:5:1101:1652:2132 1:N:0:GATCAG

to

HWI-ST896:156:D0JFYACXX:5:1101:1652:2132/1

Pre-processing sequence data. Although preassembly sequence quality control steps are not required, performing a few easy steps can 
improve performance. First, if the reads include barcodes used for multiplexing on the sequencing instrument, all barcodes must be 
removed before running Trinity, for example, by running Trimmomatic44 or cutadapt45.

Second, removing reads (or regions of reads) that probably include sequencing errors may reduce the complexity of the resulting 
de Bruijn graph and hence improve RAM usage and program runtime. Specifically, the program Trimmomatic44 can successfully remove 
terminal nucleotides characterized by a quality that is lower than a user-supplied minimum threshold (e.g., Q15).

Third, if more than 200 million paired-end sequences are to be assembled, the user may consider performing an in silico  
normalization of the sequencing reads. Deep RNA-seq produces vast numbers of reads for transcripts that are already well represented 
at lower sequencing depths in addition to providing increased sensitivity for the detection of rarer transcripts36,46. Normalization 
decreases runtime by reducing the total number of reads, while largely maintaining transcriptome complexity and capability for 
full-length transcript reconstruction47. Trinity includes an in silico read normalization utility inspired by the algorithm described for 
Diginorm47, where each RNA-seq fragment (single read or pair of reads) is probabilistically selected based on its median k-mer coverage 
value and the targeted maximum coverage value (Supplementary Note).

On analyzing RNA-seq data sets from fission yeast8,41 and mouse8, we have found that normalization to as low as 30× k-mer (k  =  25)  
coverage (23–31% of the reads) results in full-length reconstruction to an extent approaching that based on the entire read set, and 
far exceeds the full-length reconstruction performance, when simply subsampling the same number of reads from the total data set 
(Fig. 2). Although in silico normalization can better enable Trinity assembly of large RNA-seq data sets, and it is clearly better than 
the alternative of subsampling reads, the sensitivity for full-length transcript reconstruction may be affected, such as leading to the 
6% decrease in full-length transcript reconstruction observed for the 30× maximum coverage normalization obtained on the basis of 
our mouse RNA-seq data (Fig. 2). However, the relative impact on the percentage of alternatively spliced reference transcript isoforms 
detected remains largely unchanged (unpublished data




).Q18Q18
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expressed in different samples (tissues, environmental conditions 
and so on). Trinity supports the achievement of these goals lever-
aging additional popular software already likely to be installed in 
a bioinformatics environment, by incorporating additional open-
source software as plug-in components that are directly included in 
the Trinity software suite, and by providing easy-to-use scripts that 
aim to provide a familiar and friendly command-line interface to 
otherwise complex analysis modules. Results are often provided as 
tab-delimited files that users can import into their favorite spread-
sheet programs, and visualizations are generated in PDF format. 
Below we describe the details of the individual protocol steps and 
identify the currently supported software utilities.

Comparing transcriptomes across samples
In many cases, a user will wish to compare the type or level of tran-
scripts between samples, for example, for differentially expressed 
genes. Two possible routes exist to achieve this goal. One option 
is to assemble reads corresponding to each of the sample types 
separately and then compare the results from each of the assem-
blies. This approach, however, is complicated by the need to match 
the ‘same’ transcripts derived from the independent assemblies.  
A more straightforward alternative, and the one that we recom-
mend implementing, is to first combine all reads across all samples 
and biological replicates into a single RNA-seq data set, assemble 
the reads to generate a single reference Trinity assembly (Fig. 7), 
and then quantify the level of each of these transcripts in each 
sample by aligning each sample’s (not normalized) reads to the 
reference transcriptome assembly and counting the number of 
reads that align to each transcript (oversimplified here, detailed 
below). Finally, statistical tests are applied to compare the counts 
of reads observed for each transcript across the different samples, 
and those transcripts observed to have significantly different rep-
resentation by reads across samples are reported. Further analysis 
of the differentially expressed transcripts can reveal patterns of 
gene expression and yield insights into relationships among the 
investigated samples.

Transcript abundance estimation
Transcript quantification is a prerequisite for many downstream 
investigations. Several metrics have been proposed for measuring 
transcript abundance levels based on RNA-seq data, normalizing 
for depth of sequencing and the length of transcripts. These metrics 
include reads per kilobase of target transcript length per million 
reads mapped (RPKM20) for single-end sequences, and an analo-
gous computation based on counting whole fragments (FPKM21) 
for paired-end RNA-seq data.

To calculate the number of RNA-seq reads or fragments that 
were derived from transcripts, the reads must first be aligned to the 
transcripts. When you are working with a reference genome and 
an annotated transcriptome, reads are usually aligned to one or 
both4. In a de novo assembly setting, the reads are re-aligned to the 
assembled transcripts. However, alternatively spliced isoforms and 
recently duplicated genes may share sub-sequences that are longer 
than a single read or read pair, and these reads will map equally 
well to multiple targets. Several methods4,14,22 were recently devel-
oped to estimate how to correctly allocate such reads to transcripts 
in a way that best approximates the transcripts’ true expression 
levels. Among these is the RSEM (RNA-seq by expectation- 
maximization) software14, which uses an iterative process to 
fractionally assign reads to each transcript based on the prob-
abilities of the reads being derived from each transcript (Fig. 8), 
taking into account positional biases created by RNA-seq library- 
generating protocols.

RSEM comes bundled with the Trinity software distribution. The 
RSEM protocol currently requires gap-free alignments of RNA-seq 
reads to Trinity-reconstructed transcripts, such as alignments gen-
erated by the Bowtie software23. Given the Trinity-assembled tran-
scripts and the RNA-seq reads generated from a sample, RSEM will 
directly execute Bowtie to align the reads to the Trinity transcripts 
and then compute transcript abundance, estimating the number 
of RNA-seq fragments corresponding to each Trinity transcript, 
including normalized expression values as FPKM. In addition to 
estimating the expression levels of individual transcripts, RSEM 

 Box 2 | Computational requirements 
The Trinity software is designed for Unix-type operating systems (primarily Linux); it provides a command-line interface and is best run 
on a high-memory, multicore computer or in a high-performance computing environment. In general, we recommend having ~1 GB  
of RAM per 1 million paired-end reads. A typical configuration is a multicore server with 256 GB to 1 TB of RAM, and such systems 
have become more affordable in the recent years ($15,000–40,000; markedly less expensive than many high-performance instruments 
used in molecular biology, and probably within reach of a departmental core facility). Smaller data sets can be processed in computing 
environments with reduced memory resources (e.g., see the PROCEDURE, which can be completed on a laptop with 8 GB of RAM).  
For research groups that lack the required computing resources, such resources are freely accessible to eligible researchers via the  
Data-Intensive Academic Grid (DIAG, http://diagcomputing.org), and services are available to researchers in the United States  
(and their international collaborators) through XSEDE, on systems such as ‘Blacklight’ at the Pittsburgh Supercomputing Center  
(http://www.psc.edu/index.php/trinity).

As Trinity is executed from command line, users should have a basic familiarity with operating in a Unix environment. Each of  
Trinity’s three core modules has a different characteristic run time, memory usage and parallelization (Fig. 1). Although the entire  
Trinity computing pipeline can be executed on a single high-memory machine, the later stages, including Chrysalis ‘QuantifyGraph’  
section and the Butterfly computations, benefit from access to a compute farm, where they can be massively parallelized. To this  
end, Trinity’s final massively parallel section integrates the ability to submit to Load Sharing Facility, a grid-scheduling system.  
This objective is achieved through the use of the command-line parameter ‘--grid_computing_module’ identifying a user-defined  
module for submitting commands to the grid for execution. A submission script (‘trinity_pbs.sh’) is also provided for using Trinity with 
the Portable Batch System Torque and PBSpro cluster job schedulers.

http://diagcomputing.org
http://www.psc.edu/index.php/trinity
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 Box 3 | Basic Trinity operation 
The assembly pipeline for a typical Trinity assembly is executed from the command line via a single Perl script called ‘Trinity.pl’, with 
options describing the sequencing protocol and the names of the files containing RNA-seq reads. For the Unix-style commands shown 
throughout, we use the initial character ‘%’ as a command prompt, and the $TRINITY_HOME variable corresponds to the location of 
the Trinity software installation directory. Commands that span multiple lines are separated by a trailing ‘\’ character.
If the RNA-seq protocol used a non-strand-specific method, then Trinity.pl is executed as follows:
For single-end reads:
% $TRINITY_HOME/Trinity.pl --seqType fq \

--single single.fq --JM 20G

For paired-end reads:
% $TRINITY_HOME/Trinity.pl --seqType fq \

--left left.fq \

--right right.fq --JM 20G

The --seqType parameter indicates the file format for the sequenced reads, which can be in FASTQ (‘fq’) or FASTA (‘fa’) format  
(see Box 1 and the PROCEDURE for more detailed descriptions of input requirements). Trinity will also detect which flavor of FASTQ  
is used (Sanger, Illumina 1.3, or CASAVA 1.8 + ) and convert them to FASTA files; Trinity does not currently use the base quality  
scores provided in the FASTQ file format. If the data are paired, the new FASTA file will have /1 and /2 header information to indicate 
‘pairedness’. When other formats of FASTQ or if paired-end FASTA files are provided to Trinity, users must ensure that this pairedness  
is represented using the /1 and /2 read name suffix notation.

Users can include additional parameter settings (see below) to tune any of the three assembly steps according to the characteristics 
of the data set, but Trinity usually performs well with the default parameters. Furthermore, some settings, such as ‘--JM 20G’ above 
(20 GB of memory to be allocated to Jellyfish for building the initial k-mer catalog), relate to the hardware being used, and Box 2 
describes how users can select optimal settings for different hardware configurations.

Trinity output. The final output from running Trinity is a single FASTA-formatted file containing the reconstructed transcript sequences, 
found as ‘trinity_out_dir/Trinity.fasta’. To understand the output format, recall that Chrysalis divides sequences into graph components 
based on sub-sequences shared between them, and Butterfly further refines the sequence’s classification by partitioning components 
into sets of transcript contigs based on read support within the graph (Fig. 1).
An example of a pair of entries found in the Trinity FASTA-formatted output is as follows (Fig. 3):
 > comp0_c0_seq1 len = 5528 path = [3647:0-3646 129:3647-3775 1752:3776-5527]

AATTGAATCCCTTTTTGTATTGAAAAAGTTGAAATGAAAGACATATACAGAT

TGAATGTG…TCCTCTGATACACAGCCTCGCAGGGTTCATTTCAAGCCGTGGG

GCTGCGCCACGGGTGCTAAGTCAACTGCATTCGATGCGGCTTTTAAACCCCC

AGGGGACACCTCGGCCAGCTGTTTGCCTGCAGTA…TTGTGTTTCTTCAACAG

TTTATCAGCTTGCTGAATTGCCATTTTATTATTTCCATTATCAAGATAATCG

TAAATGGGCCGGAGGCGCCGGTCGTTAGGGTCCTGCACATGGCCCCGCGTCG

CCATGATGACAAGCGCAGAACCTCAGT

 > comp0_c0_seq2 len = 5399 path = [3647:0-3646 1752:3647-5398]

AATTGAATCCCTTTTTGTATTGAAAAAGTTGAAATGAAAGACATATACAGAT

TGAATGTG.TTGTGTTTCTTCAACAGTTTATCAGCTTGCTGAATTGCCATT

TTATTATTTCCATTATCAAGATAATCGTAAATGGGCCGGAGGCGCCGGTCGT

TAGGGTCCTGCACATGGCCCCGCGTCGCCATGATGACAAGCGCAGAACCTCA

GT

The FASTA header describes how the transcript was structurally represented as reconstructed by Butterfly. For example, in the header 
of the first reported sequence, the accession value ‘comp0_c0_seq1’ corresponds to i) Chrysalis component ‘comp0’, ii) Butterfly  
disconnected subgraph ‘c0’, iii) Butterfly-reconstructed sequence ‘seq1’ and iv) having a length of 5,528 bases. The path of the  
sequence traversed by Butterfly through nodes in the sequence graph (Fig. 3a, blue, red and green nodes) is provided in the header as 
‘path = [3647:0–3646 129:3647–3775 1752:3776–5527]’, listing the identifiers of the ordered nodes (3647, 129, 1752) and the ranges 
within the reconstructed transcript sequence that correspond to each respective node.

The second sequence above is a second transcript derived from the same component, identified by the accession ‘comp0_c0_seq2’ 
that corresponds to a sequence ‘seq2’ output from the same Chrysalis component and Butterfly subgraph ‘comp0_c0’. In this case,  
the path traverses only two of the nodes 3647 and 1752 (Fig. 3a, blue and green nodes), through the edge connecting them directly. 
Thus, ‘seq1’ differs from ‘seq2’ only by the addition of the sequence in the internal node ‘129’ (central sub-sequence shown in bold 
italics; Fig. 3a, red node). Such variations can result from alternative splicing. Here, for example, comparison with the reference mouse 
genome shows that the internally unique sequence in ‘seq1’ corresponds to a cassette exon that is skipped in ‘seq2’ (Fig. 3c, where 
Trinity ‘seq1’ and ‘seq2’ are shown as ‘Isoform B’ and ‘Isoform A’, respectively). Such transcripts can be validated by comparison with 
an annotated reference genome (even that of a related species) or experimentally. In some cases, alternative paths reflect the shared 
and distinct portions in paralogous genes or alternative alleles. Mate-pairing information and sufficiently long reads enable Trinity to 
resolve phased variations and correctly reconstruct the individual isoforms or paralogous transcripts from the more complex graphs8.
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computes ‘gene-level’ estimates using the Trinity component as a 
proxy for the gene. To compare expression levels of different tran-
scripts or genes across samples, a Trinity-included script invokes 
edgeR to perform an additional TMM (trimmed mean of M-values)  

scaling normalization that aims to account for differences in total 
cellular RNA production across all samples24,25.

Both full-length and partially reconstructed Trinity tran-
scripts can be useful to estimate gene expression, as compared 

 Box 4 | Advanced Trinity operations 
Leveraging strand-specific RNA-seq data. Trinity’s preferred input is strand-specific RNA-seq data, which enables it to distinguish  
between sense and antisense transcripts and minimizes erroneous fusions between neighboring transcriptional units that are encoded 
on opposite strands. This characteristic of Trinity is particularly useful when the Trinity approach is applied to dense microbial genomes,  
in which overlapping transcriptional units are common. Several 




methods are available for generating strand-specific RNA-seq48,49.

When given strand-specific data, Trinity first converts all the input reads to the transcribed strand orientation, reverse-complementing 
the strand if required. Users need to indicate strand specificity to Trinity.pl via the ‘--SS_lib_type’ parameter, with ‘F’ or ‘R’ values for 
single-end reads to indicate reads originating from the transcribed or opposite strand, respectively. Similarly, ‘FR’ or ‘RF’ values are used 
for paired-end reads to reflect both ends (Fig. 4). For example, the dUTP-based strand-specific sequencing generates ‘RF’ paired-end 
sequences, where the right read (name ending with /2) corresponds to the transcribed strand, and the left read (name ending with /1) 
exists in the opposite strand. A corresponding Trinity assembly command would be constructed as follows:
For single-end reads:

% $TRINITY_HOME/Trinity.pl --seqType fq --single single.fq \

--JM 20G --SS_lib_type F

For paired-end reads:

% $TRINITY_HOME/Trinity.pl --seqType fq --left left.fq \

--right right.fq --JM 20G --SS_lib_type RF

During the FASTA conversion, Trinity reverse-complements the read sequences that are specified to exist in the ‘R’ orientation.
The use of strand-specific data can cause a small increase in running time, owing to the increased k-mer complexity of the data.  

Specifically, in strand-specific data, the forward and reverse-complemented k-mers are stored individually, whereas in non-strand- 
specific data there is no distinction between a k-mer in either orientation, and a k-mer is stored in a single canonical representation




.  

However, this small run-time increase yields several benefits, including a small overall improvement in transcript reconstruction  
compared with non-strand-specific data (Fig. 5), a substantial reduction in the number of falsely fused transcripts in species with 
compact genomes, such as fission yeast or D.melanogaster (Fig. 5), and the ability to distinguish sense and antisense transcripts,  
thus revealing otherwise concealed mechanisms for transcriptional regulation8,41.

Mitigating falsely fused transcripts. To further resolve erroneous fusion of overlapping transcripts from close neighboring genes, Trinity 
can leverage mate-pair information (with the ‘--jaccard_clip’ parameter) to identify and dissect regions within assembled contigs that 
are consistent with overlapping yet distinct transcripts (Fig. 6). In our experiments, roughly half of fused transcripts in fission yeast 
and D. melanogaster are resolved using this method, albeit at the cost of doubling to tripling of the total runtime (Fig. 5). As this 
operation has little effect on the quality of transcriptomes reconstructed from gene-sparse genomes, such as that of many vertebrates, 
such as, for instance, the mouse (Fig. 5), users are encouraged to use ‘--jaccard_clip’ in the case of transcriptome assemblies for  
organisms expected to have compact genomes, such as microbial eukaryotes, where erroneous fusions are more likely to be generated.

Additional parameters and approaches to consider. Several other options can be tuned to further improve accuracy and reduce runtime. 
First, even though Trinity handles substitution-type sequencing errors well, it cannot detect adapters or contaminants that survive 
the poly-dT enrichment (poly-A capture) protocols. In Trinity’s assemblies, it is not uncommon to find sequences from other species 
(such as viruses and bacteria) or native nonpolyadenylated transcripts that are highly abundant (such as rRNA). Although some such 
sequences can yield important insights (e.g., viral genomes in tumors50), in most cases users 




will opt to prefilter them. In particular, 

read pre-processing, such as in silico normalization of read quantities, quality trimming or read filtering can reduce graph complexity 
and resulting runtimes (Box 1).

Second, when performing very deep sequencing (e.g., in order to identify rare transcripts), the larger number of observed sequencing 
errors contributes to increased graph complexity and longer runtimes. In most cases, setting the minimum k-mer coverage requirement  
to 2 instead of the default of 1 via the ‘--min_kmer_cov 2’ parameter setting will effectively handle such cases, eliminating the singly 
occurring k-mers that are heavily enriched in sequencing errors, and thus vastly decreasing the complexity of the graph. In cases 
of very deep sequencing (beyond several hundred million paired-end reads), users can normalize their data (Box 1) and/or consider 
performing a Trinity assembly with ‘--min_kmer_cov 2’, and then align the original read data set back to the final Trinity transcripts for 
abundance estimation.

Third, Trinity’s final phase, Butterfly, operates in parallel on graphs from individual clusters and, by default, uses identical parameters 
for each cluster. As most clusters can be processed by Butterfly quite rapidly (from seconds to a few minutes), users who have domain-
specific knowledge can explore a number of parameter settings relating to graph traversal to better understand how well assembled is a 
particular cluster of transcripts. Such parameter adjustments may include redefining the read overlap requirements for path extension, 
or tuning the minimum edge weight thresholds at branch points in the graph (details are provided in the Supplementary Note and in 
Supplementary Figs. 1–5).

Q6Q6
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with estimating expression levels using a high-quality, reference 
genome–based transcript annotation. However, the more com-
pletely reconstructed transcripts tend to be more highly corre-
lated with the expression levels estimated for reference transcripts 
(Supplementary Note and Supplementary Fig. 8).

Analysis of differentially expressed transcripts
To estimate differential gene expression between two types of sam-
ples, at least three biological replicates of each sample should ideally 
be obtained. Collection of replicate data enables to test whether the 
observed differences in expression are significantly different from 
expected biological variation under the null hypothesis that tran-
scripts are not differentially expressed




. In the absence of biological 

replicates, it is still possible to identify differentially expressed tran-
scripts by using statistical models of expected variation, such as 
under the Poisson or negative binomial distribution. The Poisson 
distribution models well the variation expected between technical 
replicates26, whereas the negative binomial distribution fares better 
in accounting for the increased variation observed between biologi-
cal replicates, and it is a favored model for identifying differentially 
expressed transcripts by leading software tools15,16.

Trinity transcriptome assemblies can serve as useful substrates 
for evaluating changes in gene expression between samples, and 
results are largely consistent with studies based on reference tran-
scriptomes (Supplementary Note and Supplementary Fig. 9). 
To this end, we rely on tools from the Bioconductor project for 
identifying differentially expressed transcripts, including edgeR15 

Q6Q6

and DESeq16. Bioconductor requires the R software for statisti-
cal computing, which includes a command-line environment and 
programming language syntax that can present a barrier to new 
users or those lacking extensive bioinformatics training. To facili-
tate the use of Bioconductor tools for transcriptome studies, the 
Trinity software suite includes easy-to-use scripts that leverage the 
R software to identify differentially expressed transcripts; generate 
tab-delimited output files listing differentially expressed transcripts 
including fold change and statistical significance values; and gener-
ate visualizations such as MA plots




, volcano plots, correlation plots 

and clustered heat maps in PDF format (see ‘Protocol overview’ 
and PROCEDURE).

Protein-coding region prediction and functional annotation of 
Trinity transcripts





Most transcripts assembled from eukaryotic RNA-seq data derived 
from polyadenylated RNA are expected to code for proteins.  
A sequence homology search, such as by BLASTX, against sequences 
from a well-annotated, phylogenetically related species is the most 
practical way to identify likely coding transcripts and to predict 
their functions. Unfortunately, such well-annotated ‘relative’ species  
are often not available for newly targeted transcriptomes. In 
such cases, using the latest nonredundant protein database  
(e.g., NCBI’s ‘nr’, ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nr.gz 
or Uniprot ftp://ftp.uniprot.org/pub/databases/uniprot/current_
release/knowledgebase/complete/uniprot_trembl.fasta.gz) is an 
appropriate alternative.
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Figure 2 | Effects of in silico fragment 
normalization of RNA-seq data on Trinity  
full-length transcript reconstruction. (a,b) The  
y axis shows the number of full-length transcripts 
reconstructed from a data set of paired-end 
strand-specific RNA-seq in S. pombe (10 million 
paired-end reads) (a) and mouse (100 million, 
paired-end reads) (b), using either the full  
data set (total; 100%) or different samplings  
(x axis) by either Trinity’s in silico normalization 
procedure (at 5× up to 100× targeted maximum 
k-mer (k  =  25) coverage; blue bars)) or  
random downsampling of the same number  
of reads (red bars).
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Figure 3 | Transcriptome and genome representations of alternatively spliced 
transcripts. (a–c) An example of the graphical representation generated by 
Trinity’s Butterfly software (a) along with the corresponding reconstructed 
transcripts (b) and their exonic structure based on alignment to the mouse 
genome (c). Each node in a is associated with a sequence, and directed edges 
connect consecutive sequences from 5′ to 3′ in the same transcript. Bulges and 
bifurcations indicate sequence differences between alternative reconstructed 
transcripts, including alternatively spliced cassette exons; only a single bulge 
is shown in this transcript graph, yielding the red node. Edges are annotated 
by the number of RNA-seq fragments supporting the transcript from the 5′ 
sequence to the 3′ one. In this example, there are two supported paths: one 
from the blue to the green node (supported by 32 fragments) yielding ‘isoform 
A’ (b, top), and the other from the blue to the red to the green node, supported 
by at most five fragments, yielding ‘isoform B’ (b, bottom). The red node is 
a result of an alternatively skipped exon, as apparent in the gene structure 
(c, red bar, shown in ‘isoform B’). Navigable transcript graphs are optionally 
generated by Butterfly, provided in ‘dot’ format, and can be visualized using 
graphviz (http://graphviz.org). These details are provided on the Trinity 
website (http://trinityrnaseq.sourceforge.net/advanced_trinity_guide.html).

ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nr.gz
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_trembl.fasta.gz
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_trembl.fasta.gz
http://graphviz.org
http://trinityrnaseq.sourceforge.net/advanced_trinity_guide.html
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Newly targeted transcriptomes may also encode proteins that are 
insufficiently represented by detectable homologies to known pro-
teins. Capturing those coding regions requires methods that predict 
coding regions based on metrics tied to sequence composition. 
One such utility is TransDecoder (Supplementary Note), which 
we developed and include with Trinity to assist in the identifica-
tion of potential coding regions within reconstructed transcripts. 
When run on the Trinity-reconstructed transcripts, TransDecoder 
identifies candidate protein-coding regions on the basis of nucle-
otide composition, open reading frame length and (optional) Pfam 
domain content. Although running TransDecoder and functionally 
annotating coding regions are not covered as part of the present 
protocol, relevant documentation is provided in the Trinity website 
at http://trinityrnaseq.sourceforge.net/analysis/extract_proteins_
from_trinity_transcripts.html and http://trinityrnaseq.sourceforge.
net/annotation/Trinotate.html.

Dynamic graphical user interfaces, such as IGV27 or 
GenomeView28, are especially useful in studying transcript 
reconstructions. Although they were originally designed for 
genomes, these interfaces can be readily used to view align-
ments of reads to transcripts, putative coding regions, regions 
of protein sequence homology and short-read alignments with 
pair links (e.g., http://trinityrnaseq.sourceforge.net/analysis/
read_alignment_visualization_QC.html).

Limitations of the Trinity approach to transcriptome analysis
Although Trinity is highly effective in reconstructing transcripts 
and alternatively spliced isoforms, in the absence of a reference 
genome it can be difficult, if not impossible, to fully understand 
the structural basis for the observed transcript variations, such as 
whether they are due to one or more skipped exons, alternative 
donor or acceptor spliced sites or retained introns. We are cur-
rently exploring experimental and computational strategies to 
better enable achieving such insights from RNA-seq data in the 
absence of reference genomes.

The RNA-seq reads and pairing information enables Trinity to 
resolve isoforms and paralogs8, but its success depends on find-
ing sequence variations that can be properly phased by individual 
reads or through pair links. Sequence variations that cannot be 
properly phased can result in erroneous chimeras between iso-
forms or paralogs that are impossible to discern from short-read 
data alone. Improvements in long-read technologies29 should help 
address these challenges. Notably, although Trinity currently only 
officially supports Illumina RNA-seq data, efforts are underway 
to explore the use of transcript-sequencing reads generated from 
alternative technologies, including those from Pacific Biosciences30 
and Ion Torrent31.

Finally, as in high-throughput genome sequencing, evidence for 
polymorphisms can be mined from the Illumina RNA-seq data 
mapped to Trinity assemblies (as in van Belleghem et al.32) and 
visualized within the display. However, researchers must be par-
ticularly cautious in evaluating polymorphisms in the context of 
RNA-seq and de novo transcriptome assembly data, as incorrect 
transcript assembly or isoform misalignment can be easily mis-
interpreted as evidence of polymorphism. In particular, when 
transcripts are very highly expressed, sequencing errors can yield 
substantially expressed ‘variants’. Determining the best practices for 
calling SNPs in de novo transcriptome assemblies and examining 
allele-specific expression is an open area of research. Indeed, as 
bioinformatic software become easier to use, it is essential for the 
research community to develop and use best practices to ensure 
that controversial results are not the result of multiple sources  
of error33.
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Figure 4 | Strand-specific library types. The left (/1) and right (/2) 
sequencing 




reads are depicted according to their orientations relative  

to the sense strand of a transcript sequence. The strand-specific library  
type (F, R, FR or RF) depends on the library construction protocol and is  
user-specified to Trinity via the ‘--SS_lib_type’ parameter.
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Figure 5 | Full-length transcript reconstruction  
by Trinity in different organisms, sequencing 
depths and parameters. The y axis to the 
left-hand side shows the number of fully 
reconstructed transcripts for Trinity assemblies 
of RNA-seq data derived from fission yeast 
(S. pombe8,41), Drosophila melanogaster11 
and mouse8 with different combinations of 
parameters: DS, double-stranded mode;  
SS, strand-specific mode;  + J, using  
the ‘--jaccard_clip’ parameter to split falsely  
fused transcripts. Both SS and DS results are 
provided for S. pombe and mouse, but only  
DS results are provided for Drosophila, as its  
RNA-seq data were not strand specific.  
Blue shows full-length transcripts; red shows 
full-length merged transcripts (i.e., transcripts 
erroneously fused (multicistronic) with  
another (typically neighboring) transcript).  
The black asterisks (values shown in the y axis on the right-hand side of the graph) indicate the run times in each case with a contemporary high-memory 
(256–512 GB of RAM) server using a maximum of four threads (‘--CPU 4’, see Step 6 of the PROCEDURE).
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Alternative analysis packages
Excellent tools are available and in widespread use for transcrip-
tome studies in organisms for which a high-quality reference 
genome sequence is available, including those provided in the 
Tuxedo software suite (Bowtie, TopHat, Cufflinks, Cuffdiff and 
CummeRbund4,21,23,34) or Scripture5. Available de novo RNA-seq 
assembly software include, among others, Oases7, SOAPdenovo-
trans and TransABySS6. The eXpress software22 implements a 
highly efficient algorithm for estimating transcript expression lev-
els, and leverages the Bowtie2 software34 for short-read alignments, 
providing an alternative to using RSEM for estimating transcript 
measurements. New methods for differential expression analysis 
based on RNA-seq data are also emerging35–39. As we continue to 
maintain and enhance the Trinity software and support related 
downstream analyses, we aim to explore the impact of new tools as 
they become available, and integrate those found to be most useful 
into future analysis pipelines, and we encourage users to explore 
alternative methods independently. In addition, we encourage 
users to explore the currently supported tools, including edgeR and 

RSEM, independently of using the Trinity-provided helper utilities, 
as they include additional capabilities that may not be fully acces-
sible via the helper utility interface.

Future Trinity developments are planned to not only support 
genome-free de novo transcriptome assembly but also to be able 
to leverage reference genome sequences and transcript annota-
tions, where available. In addition to providing effective methods 
to assist in genome annotation, such developments should expand 
researchers’ ability to explore the transcriptional complexity of 
model organisms, particularly in those cases in which genomes 
are modified or rearranged, such as in cancer40.

Protocol overview
The following procedure details how to run Trinity to assemble 
a transcriptome reference from RNA-seq from multiple samples; 
estimate expression levels for each transcript in each sample; and, 
finally, identify transcripts that are differentially expressed between 
the different samples.

This protocol provides a walk-through for some standard opera-
tions used to generate and analyze Trinity assemblies, including 
de novo RNA-seq assembly, abundance estimation and differen-
tial expression. For simplicity, libraries from biological replicates 
are not used in the protocol, but note that at least three biological 

Figure 6 | Evaluating paired-read support via 
the Jaccard similarity coefficient. Read pair 
support is computed by first counting the 
number of RNA-seq fragments (bounds of paired 
reads) that span each of two outer points of a 
specified window length (default: 100 bases), 
and then computing the Jaccard similarity 
coefficient (intersection/union) comparing the 
fragments that overlap either point. An example 
is shown for a neighboring pair of S. pombe 
transcripts (SPAC23C4.14 and SPAC23C4.15, 
bottom) with substantial overlapping read 
coverage (gray track), resulting in a contiguous 
(fused) transcript assembled by Inchworm. 
However, the Jaccard similarity coefficient (blue 
track) calculated from the paired reads (gray 
dumbbells) clearly identifies the position of 
reduced pair support. Examples of strong (upper 
left) and weak (upper right) pair support are 
depicted at the top. When using the ‘--jaccard_clip’ parameter, the Inchworm contig is dissected into two separate full-length transcripts, which are then 
further processed by Chrysalis and Butterfly as part of the Trinity pipeline.
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Figure 7 | De novo transcriptome assembly and analysis workflow. Reads 
from multiple samples (e.g., different tissues, top) are combined into 
a single data set. Reads may be normalized to reduce read counts while 
retaining read diversity and sample complexity. The combined read set 
is assembled by Trinity to generate a ‘reference’ de novo transcriptome 
assembly (right). Protein-coding regions can be extracted from the 
reference assembly using TransDecoder and further characterized according 
to likely functions based on sequence homology or domain content. 
Separately, sample-specific expression analysis is performed by aligning 
the original sample reads to the reference transcriptome assembly on a per 
sample basis, followed by abundance estimation using RSEM. Differentially 
expressed transcripts are identified by applying the Bioconductor software, 
such as edgeR, to a matrix containing the RSEM abundance estimates 
(number of RNA-seq fragments mapped to each transcript from each 
sample). Differentially expressed transcripts can then be further grouped 
according to their expression patterns.
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replicates per sample or condition are required in order to test for 
significance given observed biological and technical variation.

All the methods and tools for interrogating assemblies are 
described in the Trinity software website (http://trinityrnaseq.
sf.net), and here we provide a selection of these operations that 
strikes a balance between the length of this article and showcasing 
the breadth of capabilities. This protocol is based on the use of ver-
sion Trinityrnaseq_r2013-02-25 of the software, and readers should 
keep in mind that, as Trinity is a continually evolving research 

software, some parameters and filenames might change in future 
software releases. The most recent version of this procedure (tuto-
rial) is maintained at http://trinityrnaseq.sf.net/trinity_rnaseq_
tutorial.html. A typical use case for Trinity is not very different 
from the one described in this protocol, and we highly recommend 
users to perform the full procedure as detailed herein successfully 
before applying the protocol to their own data. Furthermore, before 
executing the steps described in the procedure, we encourage you 
to first read through the entire protocol.

Figure 8 | Abundance estimation via expectation maximization by RSEM. 
An illustrative example of abundance estimation for two transcripts with 
shared (blue) and unique (red, yellow) sequences. To estimate transcript 
abundances, RNA-seq reads (short bars) are first aligned to the transcript 
sequences (long bars, bottom). Unique regions of isoforms will capture 
uniquely mapping RNA-seq reads (red and yellow short bars), and shared 
sequences between isoforms will capture multiply-mapping reads  
(blue short bars). An expectation maximization algorithm, implemented in the RSEM software, estimates the most likely relative abundances of the transcripts 
and then fractionally assigns reads to the isoforms based on these abundances. The assignments of reads to isoforms resulting from iterations of expectation 
maximization are illustrated as filled short bars (right), and eliminated assignments are shown as hollow bars. Note that assignments of multiply-mapped reads 
are in fact performed fractionally according to a maximum likelihood estimate. Thus, in this example, a higher fraction of each read is assigned to the more 
highly expressed top isoform than to the bottom isoform.

RSEM

MATERIALS
EQUIPMENT
 CRITICAL Ensure that each of the software tools mentioned in this section 
(except Trinity) is available within your Unix PATH setting. For example, if 
you have tools installed in a ‘/usr/local/tools’ directory, you can update your 
PATH setting to include this directory in the search path by using the  
following command:

% export PATH = /usr/local/tools:$PATH

RNA-seq data (see Box 1 for details on input requirements and data pre-
processing; please note that before applying the protocol to their own data, 
we highly recommend that users successfully perform the full procedure 
using the example data set provided




)

Hardware (64-bit computer running Linux; ~1 GB of RAM per ~1 million 
paired-end reads; Box 2)
Trinity version trinityrnaseq_r2013-02-25 (http://trinityrnaseq. 
sourceforge.net)
Bowtie version 0.12.9 (http://bowtie-bio.sourceforge.net; RSEM is currently 
not compatible with Bowtie 2, so be sure to obtain the latest release for 
Bowtie 1, which is currently v. 0.12.9 (released on 16 December 2012))
Samtools version 0.1.18 (http://sourceforge.net/projects/samtools/files/
samtools/)
R version 2.15 (http://www.r-project.org)

•

•

•

•

•

•

Q2Q2

Blast +  version 2.2.27 (ftp://ftp.ncbi.nlm.nih.gov/blast/executables/ 
blast+/LATEST/)

EQUIPMENT SETUP
Software setup  Optionally, and only for simplicity, define the environmental 
variable TRINITY_HOME, replacing ‘/software/trinityrnaseq’ below with 
the path to your Trinity software installation. Alternatively, write the full path 
where $TRINITY_HOME appears in the PROCEDURE.

% export TRINITY_HOME = /software/trinityrnaseq

After you install R, install the following R packages: Bioconductor 
(http://www.bioconductor.org), edgeR (http://www.bioconductor.org/
packages/release/bioc/html/edgeR.html) and gplots, all as described below 
from within an R session:
% R

 >  source(″ http://bioconductor.org/biocLite.R ″)
 >  biocLite()

 >  biocLite (′ edgeR ′)
 >  biocLite(′ ctc ′)
 >  biocLite(′ Biobase ′)
 >  biocLite(′ ape ′)
 >  install.packages(′ gplots ′)

•

PROCEDURE
Collection of RNA-seq data ● TIMING ~10 min
1|	 Download strand-specific RNA-seq data from Schizosaccharomyces pombe grown in four conditions41 (logarithmic growth, 
plateau phase, diauxic shift and heat shock, each with 1 million Illumina paired-end strand-specific RNA-seq data, for a total 
of 4 million paired-end reads) by visiting the URL reported below in a web browser, or directly from the command line using 
‘wget’, by using the following command:

% wget \

http://sourceforge.net/projects/trinityrnaseq/files/misc/TrinityNatureProtocol 
Tutorial.tgz/download

http://trinityrnaseq.sf.net
http://trinityrnaseq.sf.net
http://trinityrnaseq.sf.net/trinity_rnaseq_tutorial.html
http://trinityrnaseq.sf.net/trinity_rnaseq_tutorial.html
http://trinityrnaseq.sourceforge.net
http://trinityrnaseq.sourceforge.net
http://bowtie-bio.sourceforge.net
http://sourceforge.net/projects/samtools/files/samtools/
http://sourceforge.net/projects/samtools/files/samtools/
http://www.r-project.org
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/
http://www.bioconductor.org
http://www.bioconductor.org/packages/release/bioc/html/edgeR.html
http://www.bioconductor.org/packages/release/bioc/html/edgeR.html
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2|	 Name the file thus downloaded ‘TrinityNatureProtocolTutorial.tgz’, which should be 540 MB in size.

3|	 Unpack this file by using the following command:

tar –xvf TrinityNatureProtocolTutorial.tgz

This should generate the following files in a TrinityNatureProtocolTutorial/ directory with the following contents:

S_pombe_refTrans.fasta # reference transcriptome for S. pombe

1M_READS_sample/Sp.hs.1M.left.fq # PE reads for heatshock

1M_READS_sample/Sp.hs.1M.right.fq

1M_READS_sample/Sp.log.1M.left.fq # PE reads for log phase

1M_READS_sample/Sp.log.1M.right.fq

1M_READS_sample/Sp.ds.1M.right.fq # PE reads for diauxic shock

1M_READS_sample/Sp.ds.1M.left.fq

1M_READS_sample/Sp.plat.1M.left.fq # PE reads for plateau phase

1M_READS_sample/Sp.plat.1M.right.fq

samples_n_reads_described.txt # tab-delimited description file.

 CRITICAL STEP Please note that this protocol expects the raw data to be of high quality, free from adapters, barcodes and 
other contaminating sub-sequences


.

De novo RNA-seq assembly using Trinity ● TIMING 60–90 min
4|	 Create a working folder and place the ‘TrinityNatureProtocolTutorial/’ directory contents there (as per the  
Materials section).

5|	 To facilitate downstream analyses, concatenate the RNA-seq data across all samples into a single set of inputs to  
generate a single reference Trinity assembly. Combine all ‘left’ reads into a single file, and combine all ‘right’ reads into a 
single file by using the following commands:

% cat 1M_READS_sample/*.left.fq  >  reads.ALL.left.fq

% cat 1M_READS_sample/*.right.fq  >  reads.ALL.right.fq

6|	 Assemble the reads into transcripts using Trinity with the following commands:

% $TRINITY_HOME/Trinity.pl --seqType fq --JM 10G \

--left reads.ALL.left.fq --right reads.ALL.right.fq \

--SS_lib_type RF --CPU 6

Please note that the ‘--JM option’ enables the user to control the amount of RAM used during Jellyfish k-mer counting:  
10 GB in this case. The ‘--CPU’ option controls the number of parallel processes. Feel free to change these parameters 
depending on your system. The Trinity-reconstructed transcripts will exist as FASTA-formatted sequences in the output file 
‘trinity_out_dir/Trinity.fasta’.
? TROUBLESHOOTING 



7|	 Use the script ‘$TRINITY_HOME/utilities/TrinityStats.pl’ to examine the statistic for the  
Trinity assemblies:

% $TRINITY_HOME/util/TrinityStats.pl \

trinity_out_dir/Trinity.fasta

The ‘TrinityStats.pl’ reports the number of transcripts, components and the transcript contig N50 value on the basis of the 
‘Trinity.fasta’ file. The contig N50 value, defined as the maximum length whereby at least 50% of the total assembled sequence 
resides in contigs of at least that length, is a commonly used metric for evaluating the contiguity of a genome assembly. Note 
that, unlike genome assemblies, maximizing N50 is not appropriate for transcriptomes; it is more appropriate to use an index 

Q8Q8
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based on a reference data set (from the same or a closely related species) and to estimate the number of reference genes 
recovered and how many can be deemed to be full length42,43. The N50 value is, however, useful for confirming that the  
assembly succeeded (you will expect a value that is near the average transcript length of S. pombe; average  =  1,397 bases).

Quality assessment (optional) ● TIMING ~90 min
 CRITICAL This section of the PROCEDURE is optional, but we highly recommend its implementation.
8|	 Examine the breadth of genetic composition and transcript contiguity by leveraging a reference data set. The annotated 
reference transcriptome of S pombe is included as file ‘S_pombe_refTrans.fasta’. Use megablast and our included analysis 
script to analyze its representation by the Trinity assembly as described below (Steps 9–13).
? TROUBLESHOOTING

9|	 Prepare the reference transcriptome FASTA file as a BLAST database:

% makeblastdb -in S_pombe_refTrans.fasta -dbtype nucl

10| Run megablast to align the known transcripts to the Trinity assembly:

% blastn -query trinity_out_dir/Trinity.fasta \

-db S_pombe_refTrans.fasta \

-out Trinity_vs_S_pombe_refTrans.blastn \

-evalue 1e-20 -dust no -task megablast -num_threads 2 \

-max_target_seqs 1 -outfmt 6

11| Once megablast is 


complete, run the script below to examine the length coverage of top database hits:

% $TRINITY_HOME/util/analyze_blastPlus_topHit_coverage.pl \

Trinity_vs_S_pombe_genes.blastn \

trinity_out_dir/Trinity.fasta \

S_pombe_refTrans.fasta

12| Examine the number of input RNA-seq reads that are well represented by the transcriptome assembly. Trinity provides 
a script (‘alignReads.pl’) that executes Bowtie to align the left and right fragment reads separately to the Trinity contigs; 
it then groups the reads together into pairs while retaining those single-read alignments that are not found to be properly 
paired with their mates. Run ‘alignReads.pl’ as follows:

% $TRINITY_HOME/util/alignReads.pl --seqType fq \

--left reads.ALL.left.fq --right reads.ALL.right.fq \

--SS_lib_type RF --retain_intermediate_files \

--aligner bowtie \

--target trinity_out_dir/Trinity.fasta -- -p 4

13| When ‘alignReads.pl’ is run using strand-specific data, as indicated above with the ‘--SS_lib_type RF’ parameter setting, 
it will separate the alignments that align to the sense strand (‘ + ’) from those that align to the antisense strand (‘ − ’


).  

All output files including coordinate-sorted and read-name–sorted SAM files should exist in a ‘bowtie_out/’ directory.  
Count the number of reads aligning (at least once) to the sense strand of transcripts by running the utility below on the 
sense-strand read name–sorted alignment file as shown:

% $TRINITY_HOME/util/SAM_nameSorted_to_uniq_count_stats.pl \

bowtie_out/bowtie_out.nameSorted.sam. + .sam

Abundance estimation using RSEM ● TIMING 40–60 min
14| Obtain transcript abundance estimates by running RSEM separately for each sample, as shown below (Steps 15–18).  
The Perl script ‘run_RSEM_align_n_estimate.pl’ simply provides an interface to the RSEM software, translating the familiar Trinity  

Q10Q10

Q11Q11



protocol

nature protocols | VOL.8 NO.X | 2013 | 13

command-line parameters to their RSEM equivalents and then executing the RSEM software. Each relevant step below  
(Steps 15–18) generates files (‘$ {prefix}.isoforms.results’ and ‘${prefix}.genes.results’) containing 
the abundance estimations for Trinity transcripts (Table 1) and components (Table 2), respectively. The ${prefix} in the 
filename is set based on the ‘--prefix’ setting in the commands below, which is unique to each sample. Please note that, with 
regard to the parameters reported in Tables 1 and 2, the gene length and effective length are defined as the IsoPct-weighted 
sum of transcript lengths and effective lengths. The gene expected counts, TPM and FPKM are defined as the sum of its  
transcripts’ expected counts, TPM and FPKM.
? TROUBLESHOOTING

15| RSEM for log phase


:

% $TRINITY_HOME/util/RSEM_util/run_RSEM_align_n_estimate.pl \

--transcripts trinity_out_dir/Trinity.fasta \

--left Sp.log.1M.left.fq \

--right Sp.log.1M.right.fq \

--seqType fq \

--SS_lib_type RF \

--prefix LOG

16| RSEM for diauxic shift:

% $TRINITY_HOME/util/RSEM_util/run_RSEM_align_n_estimate.pl \

--transcripts trinity_out_dir/Trinity.fasta \

--left Sp.ds.1M.left.fq \

--right Sp.ds.1M.right.fq \

--seqType fq \

--SS_lib_type RF \

--prefix DS

17| RSEM for heat shock:

% $TRINITY_HOME/util/RSEM_util/run_RSEM_align_n_estimate.pl \

--transcripts trinity_out_dir/Trinity.fasta \

--left Sp.hs.1M.left.fq \

--right Sp.hs.1M.right.fq \

--seqType fq \

--SS_lib_type RF \

--prefix HS

Q2Q2

Table 1 | Example contents of RSEM’s ‘isoforms.results’ file.

transcript_id gene_id Length effective_length Expected_count TPM FPKM IsoPct

comp56_c0_seq1 comp56_c0 3,739 3,443 637.65 16,664.43 7,008.23 11.26

comp56_c0_seq2 comp56_c0 3,697 3,401 4,966.34 131,393.38 55,257.53 88.74

comp62_c0_seq1 comp62_c0 7,194 6,898 4,551.13 59,364.09 24,965.59 95.54

comp62_c0_seq2 comp62_c0 7,076 6,778 208.87 2,771.95 1,165.74 4.46
‘transcript_id’ is the Trinity transcript identifier; ‘gene_id’ is the Trinity component to which the reconstructed transcript was derived; ‘length’ is the length of the reconstructed transcript; ‘effective length’ 
is the mean number of 5′ start positions from which an RNA-seq fragment could have been derived from this transcript, given the distribution of fragment lengths inferred by RSEM (the value is equal to 
transcript_length  −  mean_fragment_length  +  1); ‘expected count’ is the number of expected RNA-seq fragments assigned to the transcript given maximum-likelihood transcript abundance estimates; ‘TPM’ is 
the number of transcripts per million; ‘FPKM’ is the number of RNA-seq fragments per kilobase of transcript effective length per million fragments mapped to all transcripts; and ‘IsoPct’ is the percentage of 
expression for a given transcript compared with all expression from that Trinity component.
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18| RSEM for plateau phase:

% $TRINITY_HOME/util/RSEM_util/run_RSEM_align_n_estimate.pl \

--transcripts trinity_out_dir/Trinity.fasta \

--left Sp.plat.1M.left.fq \

--right Sp.plat.1M.right.fq \

--seqType fq \

--SS_lib_type RF \

--prefix PLAT

Differential expression analysis using edgeR ● TIMING  < 5 min
 CRITICAL Note that in this section the genes and transcripts can be examined separately using their corresponding RSEM 
abundance estimates. For brevity, we pursue here only the transcripts below.
19| You will see that each of the RSEM ‘*.isoforms.results’ files has a number of columns, but we only need the one called 
‘expected_count’. Create a matrix containing the counts of RNA-seq fragments per feature in a simple tab-delimited text file 
using the expected fragment count data produced by RSEM.

% $TRINITY_HOME/util/RSEM_util/merge_RSEM_frag_counts_single_table.pl\

LOG.isoforms.results DS.isoforms.results HS.isoforms.results \

PLAT.isoforms.results  >  Sp_isoforms.counts.matrix

Please note that the first column of the resulting matrix is the name of the transcript. The second, third and so on are 
the raw counts for each of the corresponding samples. The first row contains the column headings including a label for 
each sample.

20| Use edgeR to identify differentially expressed transcripts for each pair of samples. The following script automates  
many of the tasks of running edgeR or DESeq; in this procedure, we only leverage edgeR. Use the matrix created in  
Step 19 as input.

% $TRINITY_HOME/Analysis/DifferentialExpression/run_DE_analysis.pl \

--matrix Sp_isoforms.counts.matrix \

--method edgeR \

--output edgeR_dir

Please note that all the edgeR results from the pairwise comparisons now exist in the ‘edgeR_dir/’ output directory, and 
also include the following files of interest: *.edgeR.DE_results (differentially expressed transcripts identified, including fold 
change and statistical significance (Table 3)) and *.edgeR.DE_results.MA_n_Volcano.pdf (MA and volcano plots from pair-
wise comparisons (Fig. 9)).



21| To perform TMM normalization and to generate a matrix of expression values measured in FPKM, first extract the tran-
script length values from any one of RSEM’s *.isoform.results files:

% cut -f1,3,4 DS.isoforms.results  >  Trinity.trans_lengths.txt

Q12Q12

Table 2 | Example contents of RSEM’s ‘genes.results’ file.

gen


e_id transcript_id(s) Length effective_length Expected_count TPM FPKM

comp56_c0 comp56_c0_seq1, comp56_c0_seq2 3,701.73 3,405.49 5,604 148,057.81 62,265.76

comp62_c0 comp62_c0_seq1, comp62_c0_seq2 7,188.74 6,892.5 4,760 62,136.04 26,131.33

Q22Q22
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22| Now, perform the TMM normalization:

% $TRINITY_HOME/Analysis/
DifferentialExpression/run_TMM_ 
normalization_write_FPKM_matrix.pl \

--matrix Sp_isoforms.counts.matrix \

--lengths Trinity.trans_lengths.txt

This command will generate the following files: ‘Sp_isoforms.
counts.matrix.TMM_info.txt’, containing the effective  
library size for each sample after TMM normalization; and 
‘Sp_isoforms.counts.matrix.TMM_normalized.FPKM’, which 
contains normalized transcript expression values according  
to the transcript and sample, measured as FPKM


. This matrix 

file will be used for clustering expression profiles for  
transcripts across samples and generating heat map  
visualizations, as described below.

23| To study expression patterns of transcripts or genes across samples, it is often useful to restrict analysis to those  
transcripts that are significantly differentially expressed in at least one pairwise sample comparison. Given a set of  
differentially expressed transcripts, extract their normalized expression values and perform hierarchical clustering to group 
together transcripts with similar expression patterns across samples, and to group together those samples that have similar 
expression profiles according to transcripts. For example, enter the ‘edgeR_dir/’ output directory and extract those transcripts 
that are at least fourfold differentially expressed with false discovery–corrected statistical significance of at most 0.001 by 
using the following commands:

% cd edgeR_dir/

% $TRINITY_HOME/Analysis/DifferentialExpression/analyze_diff_expr.pl \

--matrix ./Sp_isoforms.counts.matrix.TMM_normalized.FPKM \

-C 2 -P 0.001

Please note that the -C parameter takes the log2 (fold_change) cutoff, which in this case is log2(4)  =  2. A number of files 
are generated, all with the prefix ‘diffExpr.P0.001_C2’ indicating the parameter choices: ‘diffExpr.P0.001_C2.matrix’ contains 
the subset of transcripts from the complete matrix ‘matrix.TMM_normalized.FPKM’ that were identified as differentially  
expressed, as defined by the specified thresholds. ‘diffExpr.P0.001_C2.matrix.heatmap.pdf’ contains a clustered heat map  
image showing the relationships among transcripts and samples (Fig. 10a) and a heat map of the pair-wise Spearman  
correlations between samples (Fig. 10b). ‘diffExpr.P0.001_C2.matrix.R.all.RData’ is a local storage of all the data generated 
during this analysis, which is used further down in the PROCEDURE (Step 25) with additional analysis tools.

24| Determine the number of such differentially expressed transcripts by counting the number of lines in the file by using 
the command:

% wc -l diffExpr.P0.001_C2.matrix

Subtract 1 so that you do not count the column header line as a transcript entry. Note that the ‘analyze_diff_expr.pl’ script 
will also directly report the number of differentially expressed transcripts identified at the given thresholds.

Q13Q13

Table 3 | Example contents of logarithmic versus plateau growth 
edgeR ‘DE_results’ file.

Transcript logFC logCPM P value FDR

comp5128_c0_seq1 10.3 11.1 2.13e-22 1.22e-18

comp5231_c0_seq1 10.0 10.9 1.10e-21 3.13e-18

comp5097_c0_seq1 8.7 11.3 5.72e-20 1.10e-16

comp1686_c0_seq1 9.2 10.4 1.01e-19 1.46e-16

comp1012_c0_seq1 8.3 11.5 2.8e-19 3.23e-16
FDR, false discovery rate.
logFC: log2(fold change) = log2(plateau_phase/logarithmic_growth).
logCPM: log2(counts per million).
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Figure 9 | Pairwise comparisons of transcript abundance. Two visualizations 
of the comparison of transcript expression profiles between the logarithmic 
growth and plateau growth samples from S. pombe to identify differentially 
expressed transcripts. (a) MA plot for differential expression analysis 
generated by EdgeR: for each gene, the log2(fold change) (log2(plateau_phase/ 
logarithmic_growth)) between the two samples is plotted (A, y axis)  
against the gene’s log2(average expression) in the two samples  
(M, x axis). (b) Volcano plot reporting false discovery rate ( − log10FDR,  
y axis) as a function of log2 (fold change) between the samples (logFC,  
x axis). Transcripts that are identified as significantly differentially 
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expressed at most 0.1% FDR are 



colored in red.
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25| Extract clusters of transcripts with 
common expression profiles from the 
earlier generated hierarchical clusters 
by running the script below, which 
uses R to cut the tree representing 
the hierarchically clustered transcripts 
based on specified criteria, such as to 
generate a specific number of clusters 
or by cutting the tree at a certain 
height. For example, run the following to partition transcripts by cutting the tree at 20% of its height:

% $TRINITY_HOME/Analysis/DifferentialExpression/define_clusters_by_cutting_tree.pl \

--Ptree 20 -R diffExpr.P0.001_C2.matrix.R.all.Rdata

The above command generates a directory (‘diffExpr.P0.001_C2.matrix.R.all.RData.clusters_fixed_P_20/’) that contains 
‘subcluster_*_log2_medianCentered_fpkm.matrix’—each autodefined cluster of transcripts is provided along with expression 
values that are log2-transformed and median-centered—and ‘my_cluster_plots.pdf’—contains a plot of the log2-transformed, 
median-centered expression values for each cluster (Fig. 10c). Note that, owing to the wide dynamic range in expression  
values of transcripts, during this step, the expression values were first log2-transformed before plotting data points.  
In addition, in order to examine common expression patterns that focus on the relative expression of transcripts across  
multiple samples, each transcript’s expression value was subsequently centered by the median value. This operation was  
performed by subtracting each transcript’s median log2(FPKM) value from its log2(FPKM) value in each sample.  
These resulting data are referred to as log2-transformed, median-centered expression values, as generated in this step.

26| (Optional) Run the script in Step 25 several times with different values of ‘--Ptree’ in order to increase or decrease the 
number of clusters generated.

Automating the required sections of the PROCEDURE ● TIMING 2–3 h
27| (Optional) If you are interested in executing the sections of the PROCEDURE without manually typing in each command,  
run the script below, which executes the required sections of the PROCEDURE. These sections include concatenating all 
samples’ reads into a single input data set, assembling the reads using Trinity, performing abundance estimation separately 
for each sample and running edgeR to identify differentially expressed transcripts. Run the automated procedure with the 
following command, including the -I (optional) parameter for an interactive experience, in which the system will pause and 
wait for a user response before proceeding to the next step.

% $TRINITY_HOME/util/run_Trinity_edgeR_pipeline.pl \

--samples_file samples_n_reads_described.txt -I
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Figure 10 | Comparisons of transcriptional 
profiles across samples. (a) Hierarchical clustering 
of transcripts and samples. Shown is a heat 
map showing the relative expression levels of 
each transcript (rows) in each sample (column). 
Rows and columns are hierarchically clustered. 
Expression values (FPKM) are log2-transformed 
and then median-centered by transcript.  
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shock; Log, mid-log growth; Plat, plateau growth.
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? TROUBLESHOOTING
Troubleshooting advice can be found in Table 4.

● TIMING
Steps 1–3, collection of RNA-seq data: ~10 min
Steps 4–7, Trinity de novo transcriptome assembly of  
4 million paired-end Illumina reads: 60–90 min
Steps 8–13, quality assessment (optional): ~90 min
Steps 14–18, using RSEM for abundance estimation: 40–60 min
Steps 19–25, 


differential expression analysis using 

EdgeR:  < 5 min
The time taken for each of the commands executed for the 
required sections of the tutorial, as reported during the 
automated execution via ‘run_Trinity_edgeR_pipeline.pl’ 
described above, and as run on a high-performance server at 
the Broad Institute (hardware specifications included),  
is provided in the Supplementary Note.

Q23Q23

Table 4 | Troubleshooting table.

Step Problem Possible reason Solution

6 ‘bad_alloc’ error Insufficient computing resources  
resulting in a fatal out-of-memory error

Ensure that you have ~1 GB of RAM per ~1 million PE reads to 
be assembled. See Box 2 for computing requirements and  
services available

Large numbers  
(hundreds or more)  
of fusion transcripts

Not using strand-specific RNA-seq,  
or applying assembly to a transcriptome 
derived from a compact genome having 
(minimally) overlapping transcripts

If paired-end reads are being used, try running Trinity.pl with 
the ‘–jaccard_clip’ parameter, which uses paired-end reads to 
separate minimally overlapping transcripts

Retained introns are 
prevalent

Unprocessed RNA is captured and 
assembled, or contaminating genomic 
DNA contributes to the assembly

Setting Trinity.pl ‘–min_kmer_cov’ to 2 or higher should reduce 
the number of retained introns, but will also reduce sensitivity 
for transcript reconstruction. Alternatively, transcripts with low 
expression (often enriched for retained introns) can be filtered 
from a given component postabundance estimation

8 Cannot find  
makeblastdb, blastn,  
or Bowtie

The additional required software tools 
were not installed or available via the 
Unix PATH setting

See EQUIPMENT section; be sure software tools are installed as 
required and that the software utilities are accessible via your 
PATH setting. Check with a systems administrator as necessary

14 Few or no transcripts 
identified as  
differentially  
expressed

Assuming transcripts are truly  
differentially expressed, insufficient 
sequencing depth caused the failure  
to detect differentially expressed  
transcripts

Adjust the sensitivity thresholds of ‘analyze_diff_expr.pl’, 
increasing the allowed FDR and lowering the fold-change 
requirements. Try running Bioconductor tools directly and 
examine the available options for data exploration. Increase 
your depth of sequencing to improve upon the detection of 
transcripts with low expression

Table 5 | Trinity assembly statistics for the assembly of 4 million 
paired-end S. pombe reads.

Assembly statistic Value

Total Trinity transcripts 9,299

Total Trinity components 8,694

Contig N50 1,585

Table 6 | Distribution of BLASTN hit coverage of reference transcripts.

Length coverage 
bin (%)

Count of reference 
transcripts in bin

Cumulative count  
of reference  

transcripts at or 
above bin level

100 3,401 3,401

90 194 3,595

80 165 3,760

70 197 3,957

60 224 4,181

50 203 4,384

40 158 4,542

30 140 4,682

20 83 4,765

10 0 4,765

0 0 4,765
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ANTICIPATED RESULTS
As Trinity’s output is not absolutely deterministic, very 
slight variations in the output (number or length of  
transcripts) may result from Trinity being run at different 
times or on different hardware.

Trinity assembly statistics are provided in Table 5.
Reference transcript BLASTN mapping results from  

Step 11 are provided in Table 6. In all, 4,765 of the  
reference S. pombe transcripts have a BLAST hit with  
an E-value less than 1e-20, and 3,401 of the 5,163 total 
reference transcripts are considered to be of approximately 
‘full length’, with the Trinity contigs aligning by greater 
than 90% of the matching reference transcript’s length.

The counts of reads mapped to the Trinity assembly via alignReads.pl and using the Bowtie aligner, obtained in Step 13, 
are provided in Table 7.

The number of differentially expressed transcripts identified as having a significant false discovery rate (FDR) value of at 
most 0.001 and at least fourfold difference in expression values, ascertained from Step 24, is 659.

Table 7 | Counts of reads mapped to the Trinity assembly.

Read classification
Count of  

individual reads
Percentage of 
mapped reads

Proper pairing 8,102,100 93.12

Left only 307,933 3.54

Right only 284,203 3.27

Improper pairing 6,476 0.07

Note: Supplementary information is available in the online version of the paper.
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